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Abstract. The modulation of a one-dimensional weakly non-linear quasimonochromatic 
ion acoustic plasma wave (the carrier) is considered. It is well known that the carrier is 
modulationally unstable for wavenumbers k larger than a critical wavenumber k , ,  and that 
when k is not near k,  the modulations of the carrier are governed by a non-linear Schrodinger 
( N S )  equation. We show that when k is near k , ,  and under certain assumptions, the 
modulations are governed by a modified form of the NS equation that involves higher-order 
non-linearities, and that the correct critical wavenumber for marginal modulational instabil- 
ity is slightly different from k, .  

1. Introduction 

Suppose the slow amplitude modulation of a one-dimensional weakly non-linear 
quasimonochromatic purely dispersive wave (the carrier wave) is characterised by a 
small parameter E.  It is well known that if the non-linearity is assumed to be of O ( E )  
then the evolution of the complex amplitude cp of the carrier is governed by the 
non-linear Schrodinger ( NS) equation 

where T~ = E'?,  5 ,  = E ( X  - V,t), t and x are time and space coordinates respectively, V, 
and k are respectively the group velocity and wavenumber of the carrier wave, and 
p=fdV,/dk and q are real functions of k. Jeffrey and Kawahara (1982) give a 
representative selection of references. Furthermore the criterion for the modulational 
instability of the carrier is 

P9 < 0. (1.2) 
For many physical systems p q  has just one real zero, at some critical wavenumber k,, 
and p q  - k - k, for k near k,. The criterion (1.2) may then be written k < k, or k > k, 
depending on whether p q  is increasing or decreasing at k = k,. I t  appears then that 
the carrier is marginally modulationally unstable at k = k,. 

Kakutani and Michihiro (1983) point out that (1.1) and (1.2) are not appropriate 
near the marginal state. Their argument has been discussed in detail in a previous 
paper (Parkes 1987, hereafter referred to as I ) .  Essentially they argue that near the 
marginal state a different ordering should be used to intensify the effect of the 
non-linearity; this leads to a new governing equation for cp to replace ( l . l ) ,  and to a 
revised modulational instability criterion to replace ( 1.2). As an illustration they 
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considered the modulation of Stokes waves (i.e. gravity waves on water of uniform 
depth) near the marginal state. By assuming that the effect of the non-linearity is then 
of O( E ” ’ )  instead of O( E )  they derived a governing equation for cp of the form 

where q , ( = q / & ) ,  q 2 ,  q,  and q4 are O(1) real functions of k, which is assumed to be 
such that k - k ,  is of O( E ) .  We shall refer to (1.3) as the modified non-linear Schrodinger 
( M N S )  equation. Kakutani and Michihiro also derived a revised modulational instabil- 
ity criterion associated with (1.3). In the notation of I this criterion may be written 

P9 < E r  (1.4) 

r =  Kpq~-(qS+44P42)I(Pol2/2. 

where 

Here K is a measure of the spread of wavenumbers about the dominant wavenumber 
in the carrier and  lcpol is, to lowest order, the the amplitude of the carrier. The criterion 
(1.4) effectively gives a revised value for the critical wavenumber. 

The modulation of Stokes waves has also been considered by Johnson (1977). He 
obtained an  equation slightly different from (1.3) and a corresponding modulational 
instability criterion different from (1.4). 

In I we considered an  arbitrary non-linear purely dispersive system in which a 
single dependent variable U satisfies an equation of the form 234 = N, where 3 is a 
linear operator involving the differential operators a l a r  and a/ax, and N represents 
all the non-linear terms. Assuming the non-linearity is of O ( E ’ ” )  near the marginal 
state we formally derived (1.3). However, as we remarked in I ,  many purely dispersive 
physical systems are described by the more general class of quasilinear partial differen- 
tial equations 

au au 
a t  ax 

A( U )  -+ B(  U )  -+ C (  U ) = O  

where U = (U,) is an n-component column vector, and the n x n matrices A, B and 
the n-component column vector C = (c,) are functions of U,, all the quantities being 
real. The purpose of this paper is to discuss a particular example of (1.5). 

A simple two-fluid model of a plasma, suitable for investigating the propagation 
of ion acoustic waves, has been studied by many authors. In particular Shiinizu and  
Ichikawa (1972)+, using the reductive perturbation method, obtained a N S  equation 
for the complex amplitude of the perturbation to the ion density, and Kakutani and 
Sugimoto (1974), using the Krylov-Bogoliubov-Mitropolsky perturbation method, 
obtained a NS equation for the complex amplitude of the electric field. Implicit in 
both these derivations was the assumption that k is not near k , .  Kakutani and Sugimoto 
also evaluated k ,  and showed that the modulational instability criterion is k > k , .  In 
the present paper we consider the propagation of ion acoustic waves when k is near 
k , .  Using the derivative expansion perturbation method (Kawahara 1973) we derive, 
under certain restrictions, the M N S  equation that replaces the N S  equation of Kakutani 
and Sugimoto and obtain a revised modulational instability criterion. 

There are  some minor errors in Shimizu and  lchikawa (1972) that are corrected in lchikawa and Watanabe 
(1977).  
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In § 2 we obtain the basic equations in the form ( l S ) ,  and in P 3 we show how to 
apply the derivative expansion procedure to them. In 5 4 we quickly recover the NS 

equation and modulational instability criterion as obtained in a different way by 
Kakutani and Sugimoto (1974), the derivation being on the assumption that k is not 
near k , .  In P 5 we consider the marginal state and derive the M N S  equation. In 9 6 
we derive the corresponding revised modulational instability criterion. 

2. The basic equations 

We consider one-dimensional ion acoustic waves propagating in a magnetic-field-free 
collisionless plasma consisting of cold ions and isothermal electrons. Assuming a 
two-fluid model and neglecting the effects of Landau damping and electron inertia, 
the governing equations may be written in non-dimensional form as 

a v l a t  + vav /ax  = E 

a n / a t + a ( n u ) / a x  = O  

anelax = -n,E 

d E l d x  = n --ne 

where n, n e ,  U ,  E are respectively the non-dimensional ion density, electron density, 
ion fluid velocity and electric field. The reference density, speed and time are respec- 
tively the undisturbed density no,  the ion sound speed c, = (YlTe/mi)”2 and (wpi)-’, 
where wpi = ( noe2/ is the ion plasma frequency. Here r /  is Boltzmann’s constant, 
Te the constant electron temperature, mi the ion mass, e the electron charge and E,, 

the vacuum permittivity. The reference electric field is m i w p i c , / e .  Equations (2.1) are 
the basic equations used in Shimizu and Ichikawa (1972) and Kakutani and  Sugimoto 
(1974). 

Equations (2.1) can be cast into the form (1.5) in many ways but we find it helpful 
to have A and B symmetric. Hence we takz 

0 1 0 0  o v o o  

0 0 0 0  0 0 1 0  
0 0 0 0  0 0 0 1  

A =  il 0 0 .] d_[ j  I2 0 o ]  

C = [ - E , O , n e E , n e - n I T  U = [n ,  U, n e ,  ElT 

where T denotes the transpose. The unperturbed system corresponds to the constant 
sclution U‘’’ = [ 1, 0, 1, OIT for which C( U“’) = 0. Using this it proves convenient to 
rewrite (1.5) in the form 

L U =  M (2.2) 

where 

a a  
a t  ax 

L = A - - + B - + V C o  (2.3) 

M = - C + ( V C , ) U = [ O , O ,  (l-ne)E,Ol’-. (2.4) 
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VCo is defined by (VC,),, =ac, /au,  evaluated at U = U''' so that 

0 0 0 - 1  
VC0=[ 0 0 0  0 0 0 xj 

-1 0 1 

3. The derivative expansion method 

In this section we show how to apply the derivative expansion procedure (Kawahara 
1973) to the system of equations (in the form (1.5)) that govern ion acoustic waves 
and establish the general method of solution. Details of the calculation for the 
non-marginal and marginal states of modulational instability are given in 00 4 and 5, 
respectively. 

to= t xo = x 7, = E't 5, = E i ( X -  v,t, ( i  = 1 , 2 , .  . . , N )  
where E is a small parameter characterising the slow modulation. As in I, it is sufficient 
to take N = 2  here. Thus defined to ,  x, are the variables appropriate to the 'fast' 
oscillations of the carrier, and  r 1  , t i ,  r2, are 'slow' variables appropriate to the slow 
modulations in a reference frame moving with the velocity V,. The time and space 
derivatives in (2.3) may now be expressed as the derivative expansions 

We introduce the extended set of independent variables 

a a 
a t  a 6  
-_  = --w -+ & ($- v, 2) + &'( $- V, -&) 

(3.1) 
-- a a a 2 a  

ax a 6  a t l  a t 2  
= k - + E - + E  - 

where -9 = kx, - of,, w and k are, to lowest order, the phase of the fast oscillations 
and the non-dimensional frequency and wavenumber. 

First we consider the non-marginal state. The non-linearity is assumed to be of 
O( e ) ,  as in Shimizu and Ichikawa (1972) and Kakutani and Sugimoto (1974), so that 
U may be written 

(3.2) 

with U'"=O in the unperturbed state where there is no wave. Using (3.2) we may 
express B as 

where 
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Substitution of (3.1), (3.2) and (3.4) into (2.3) and  (2.4) gives the expansions 
7 

L =  C E m ~ m + ~ ( E 3 )  
m = O  

where the L, are given in appendix 1 and  

(3.6) 

(3.7) 

Substituting (3.2), (3.6) and (3.7) into (2.2) and equating like powers of E ,  we obtain 
the hierarchy of equations 

(0  m = l  

In order to investigate the behaviour of the slow modulations near marginal 
instability we intensify the non-linear effects by assuming the non-linearity is of O( E ” ’ )  

as in Kakutani and Michihiro (1983). We write U as 

6 

U =  U‘’’+ E m ’ 2 U ‘ m ) ( 8 ,  71, 5 2 ,  5‘2 ,  5 2 ) + o ( & 7 / 2 )  
m = l  

where the U ( m )  are defined by (3.3), and then 

B = & +  C E m ’ 2 U ( m ) ( 6 ,  71, 51, 7 2 ,  5 2 ) + o ( E ” 2 )  
m = l  

where Bo and B, are as given by (3.5). Substitution of (3.1), (3. 
(2.3) and (2.4) gives the expansions 

(3.10) 

(3.11) 

0) and (3.11) into 

(3.12) 

(3.13) 

where the L, are given in appendix 1 and the M, are given by (3.8). Substituting 
(3.2), (3.12) and (3.13) into (2.2) and equating like powers of E ,  we obtain the hierarchy 
of equations 

(0 m = l  
(3.14) o ( E “ / 2 ) :  Lo l l (m) -  m-1 

- ( M ,  - ,rl LjU“-” m = 2 , .  . . , 6 .  

We observe that the equations in (3.9) and  (3.14) corresponding to m = 1 are the 
same. We assume that the solution to these equations is the quasimonochromatic wave 

U ” ’ = ~ ~ ( T , , ( , , T ~ , ~ ~ ) K  e x p ( i 6 ) + c c  (3.15) 
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where cp is a complex scalar function and K is a constant column vector. Here, and 
subsequently, cc is used to denote the complex conjugate of all the preceding terms. 
Substituting (3.15) into the m = 1 equation in (3.9) or (3.14) we deduce that there is 
a non-trivial solution for K provided w and k satisfy 

9 ( w ,  k)  = det{ Do(w, k)} = 0 

where 

r o -iw o -1 
-iw ik 0 0 I 0 O i k 1  

Do(+ k)  = -iwA+ikB,+VC,= 

1 - 1  0 1 ik 

so that 

9(0, k )  E -w2(k'+ 1 ) +  k 2 = 0 .  (3.16) 

Equation (3.16) is the linear dispersion relation for ion acoustic waves from which we 
obtain 

V, = dw/dk  = U'/  k3 p= ;dV, /dk=  -3w5/2k4. 

We note in passing that (3.16) has been used in various places in the rest of this paper 
to effect some simplifications. We observe that if k # 0 then 9 ( n w ,  nk) # 0 for n = 
2,3, .  . . so that the inverse of the matrix D,(nw, nk) exists for these values of n. Also, 
as rank [Do( w, k)] = 3 and K must satisfy DoK = 0, one component of K is arbitrary. 
Hence we may choose the fourth component to be unity so that cp is the amplitude of 
the electric field E. Then (3.15) becomes 

U'"=[ik/w', i/w,i/k, 1ITcp e x p ( i d ) + c c .  (3.17) 

Explicit solutions to (3.9) and (3.14) for m > 1 are given in 00 4 and 5 respectiveiy. 
Here we summarise the method of solution and obtain non-secular conditions. We 
find that, for each m > 1, equation (3.9) or (3.14) may be written 

(3.18) 

where the fi!"" ( n  = 0 , 1 , .  . . , m )  are independent of I9 and are determined by the 
solutions U"' ( j  = 1 , .  . . , m - 1) to previous equations in the hierarchy. As we require 
solutions involving no secular terms we assume a solution to (3.18) of the form 

where the U!" ( n  = 0, 1, . . . , m )  are independent of cp. This assumption imposes up 
to two conditions at each order, namely (3.21) and (3.24) below, that may be regarded 
as 'non-secular conditions'. The U!") are determined as follows. 

The function Ubm' satisfies LOU;"' = f i b " '  from which we obtain 

(VC,)Ub"'= f i p .  (3.19) 

As rank(VC,) = 2, (3.19) has a solution provided that 

rank(VCo, fib"') = 2 (3.20) 
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where (OC,, fir') is the 4 x 5  augmented matrix whose fifth column consists of the 
components of ci,',"'. I f  we write f ib"  = [ r l  , r 2 ,  r 3 ,  rJT, the condition (3.20) implies that 

r l  + r3 = 0 r2 = 0 (3.21) 

and then the solution to (3.19) is Ub"=[A,,,, p,,,, A,,+r,, rJT, where A m , p m  are 
arbitrary real functions of the slow variables. 

The function U:"' satisfies LOU',"" exp( i6 )  = fi;"' exp( i6 )  from which we obtain 

(3.22) DO(w, k )  U',"" = fi:"'. 
As rank ( D o )  = 3, (3.22) has a solution provided that 

rank(Do, fi:"') = 3. (3.22) 

If we write fi'i" = [s, , s 2 ,  s 3 ,  s,lT, the condition (3.23) implies that 

-k2s,  - wks, - w2s,+iw2ks, = 0 (3.24) 

and then the solution to (3.22) is 

(3.25) 

where h,  is an  arbitrary function of the slow variables. The second term in (3.25) is 
the solution to the homogeneous version of (3.22). We may ignore it as it may be 
absorbed into (3.15) by suitably redefining cp. 

The U',"' ( n  = 2,. . . , m )  satisfy LOU',"' exp( in6)  = fir exp( in6)  from which we 
obtain Do( nw, nk) U"" = fillm'. The solution is simply U!,"') = D-' (  nw, nk) fi!,"", 

In 9 9  4 and 5 we summarise the explicit results obtained at each order for m > 1 
by applying the above methodology to (3.9) and (3.14), respectively, and investigate 
the consequences of the non-secular conditions. The vector coefficients that are not 
stated explicitly in § §  4 and 5 may be found in appendix 2. 

U\"'=i[(ks,+ws,)/w', s I / w ,  -s,/k,OIT+hm[ik/w 2 , i /w , i /k ,  1IT 

4. Derivation of the non-linear Schrodinger equation 

In this section we are concerned exclusively with the hierarchy (3.9). We recover the 
results of Kakutani and Sugimoto (1974) that are appropriate when k is not near k,, 

At O( E ~ )  there is one  non-secular condition, namely (3.24), which gives 

acp /aT ,  = 0 (4.1) 

and then the solution to (3.9) is 

We assume that U f '  depends on T~ and 
the complex conjugate, and hence, in view of (4.1), that it is independent of T ~ .  

At O(e3)  there are two non-secular conditions. The condition (3.21) gives 

through cp and cp* only, where * denotes 

(4.2) 
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which may be solved to give 

(4.3) 

where 

A k’( k2  + 2) A (2k6 + 6k4 + 7k2 + 2) 
w3k( k4+ 3k2 + 3) 

p>= - ” = - w6(  k4+  3k’+ 3) 

and p 2 ,  u2 are arbitrary real functions of r2 and &.  If we assume that, for m > 1, 
U(“‘)= 0 when there is no wave, i.e. when cp =0,  then we may set p 2 = 0  and u2=0. 
The other non-secular condition (3.24) now gives the NS equation (1.1) with 

w3(3k”+ 6k8 -6k6 - 29k4 - 30k’- 12) 
(4.4) 12k6(k4+3k2+3)  q ( k )  = 

where we have assumed that q is of O(1).  
The (real) critical wavenumber k,-for which q(  k,) = 0-satisfies 

3 k io+ 6kf  - 6k: - 29k: - 30kf - 12 = 0 (4.5) 

from which we find that k,= 1.471 (to three decimal places). The modulational 
instability criterion (1.2) may then be written 

k >  k,. (4.6) 

5. Derivation of the modified non-linear Schrodinger equation 

In this section we investigate the hierarchy (3.14) in order to show how the results of 
the previous section are modified when k is near to k,. 

At O ( E )  there are no non-secular conditions and  the solution to (3.14) is 
U b ” = [ h 2 , p C L 2 , A 2 , 0 ] T  U:” = 0 uyl= p(21cp2, 

At O ( E ~ ’ ~ )  there is one non-secular condition, namely (3.24), which gives 

i * = ( ~ + k p 2 ) c p + ~ ( 2 4 k J + 8 l k 6 + 9 3 k 4 + 4 2 k ’ + 4 ) ~ p ~ ’ c p .  w (5.1) 

At O ( E ’ )  the non-secular condition (3.21) is just (4.2). This may be integrated to 
give the expressions (4.3) for h 2  and p z ,  where we have used the fact that (d /d~ , ) lcp j ’  = 0, 
as may be shown by combining (5.1) with its complex conjugate. As before we set 
p 2 = 0  and u 2 = 0 .  

Returning to the O ( E ~ ” )  problem, insertion of (4.3) into (5.1) apparently gives 

(5.3) 
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where q is given by (4 .4 ) .  In § 4 we assumed that k was not near k, and that q was 
of O(1). Here, however, we are considering the marginal state and we assume that 
Ak = k - k, is of O( E )  and write q = ~ q ,  , where q l  is of O( 1) and is given approximately 
by 

) . (5 .4 )  
Ak dq  Ak w 3 (  15 k 8 +  24k6 - 18 k4 - 58k2 - 30) 

=F (z) k=k, =: ( 6kS(  k 4 +  3k2 + 3)  k = k, 

We have used (4 .5)  in obtaining (5 .4) .  Hence at O ( E ~ ” )  equation (5 .3)  becomes 

acp /aT l  = o (5 .5)  

and the right-hand side of (5 .3)  is shifted to the corresponding non-secular condition 
at O ( E ” ~ ) .  Also insertion of (4 .3)  and ( 5 . 5 )  into (5 .2)  revises the expression for U’,31 to 

Continuing now with the O( E ’ )  problem, and hereafter incorporating (4 .3)  and 
( 5 . 5 )  into our results, the solution to (3 .14)  is 

k 8 + 6 k ’ + 1 2 k 4 + 1 0 k 2 + 2  d 
ub“’ = [”.. ”’ h 4 r  k 4 ( k 4 + 3 k 2 + 3 )  -Id]’ 85, 

ui4) =  CY'^!'^ acp/at1 +pi4)lcp)’cp2 U:“’ = 0. 

As Ui4) and U:’ play no part in the subsequent calculations, expressions for them 
are not given here. 

At O ( E ” ~ )  we have 

from which the non-secular condition (3 .24 )  gives 

As explained earlier, the second term on the right-hand side of (5 .7 )  has been shifted 
from the corresponding condition at O( e3”), namely (5 .3 ) .  The coefficients m?, m 3 ,  m4 
are given in appendix 3.  

We note in passing that from the non-secular conditions (3 .24)  and (3 .21) ,  at O ( E ’ )  
and O( E ~ ’ ~ ) ,  respectively, we may deduce that h3 = 0, p3 = 0. However this information 
is not required in the present calculation. 

Equation (5 .7)  is almost the desired M N S  equation. It only remains for us to 
determine A 4  and p4.  To d o  this we need to go to the next order, and there we find 
that the only information we need about the solution at O ( E ~ ’ ~ )  are the third and 
fourth components of U‘,51. These are given by 

U:” = [ .  , * ,  - ( i /  k )  x third component of Cis’, OIT. 
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At O( F ~ )  the non-secular condition (3.21) gives 

(5.8) 

where i2 and itz are given by (4.3), and 1 , ,  1 2 ,  I ,  are given in appendix 3. As for A z  
and p 2 ,  we assume that A 4  and p4 are independent of rl  . By combining ( 5 . 7 )  with its 
complex conjugate it is easily shown that 

Now elimination of the T* derivative between (5.8) and (5.9) and an integration with 
respect to gives a pair of algebraic equations for A 4 ,  p4 from which we find that 

(5.10) 

where n?, n3, n4 are given in appendix 3, and v4 is an arbitrary real function of r2 and 
t2 that we set to zero just as we set p2 and (+* to zero in (4.3). Substitution of (5.10) 
into (5 .7)  now gives (1.3) with q, = m, + n, ( i  = 2,3,4) .  As we are assuming that k is 
near k, ,  p ,  q 2 ,  q3 ,  q4 may be approximated by their values at k,. These values, together 
with those for k,  and q l ,  are given in table 1. For comparison the table also shows 
the corresponding results for a Stokes wave taken from Kakutani and Michihiro (1983). 

Table 1. Numerical results to four significant figures for ion acoustic waves and  Stokes 
waves. The latter are  taken from Kakutani and  Michihiro (1983). Note that it is usual to 
take K = 0 for a Stokes wave. 

Ion acoustic wave Stokes wave 

kc 1.471 1.363 
P -0.1240 -0.1564 
91 0 . 3 2 0 5 P k l ~  5.669hkl E 

92 163.9 77.40 
93 -0.4883 1.598 
94 2.205 3.841 
R 1020~9p,~2 - 6 . 8 7 9 ~  25.87/(~,1’-0.6775~ 

6. The modulational instability criterion 

Using the values of p ,  q l ,  q 2 ,  q3 and q4 from table 1, we find that the modulational 
instability criterion (1.4) may be rearranged to give 

k >  k , -ER (6.1) 
where k,  and R are also given in the table. The condition (6.1) is the required revision 
to (4.6), so that the revised critical wavenumber is k , - & R .  With e’”Icp0i =0.015 and 
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K =0,  for example, E R  -0,2295 and (6.1) becomes k >  1.241. In general, and as 
discussed in I, if R > 0 then wavenumbers with k ,  - E R  < k < k,  that are stable according 
to (4.6) are in fact unstable, while if R < 0 then wavenumbers with k ,  < k < k , -  E R  
that are unstable according to (4.6) are in fact stable. However, the coefficient of jcpo12 
in R is alarmingly large so that (6.1) is meaningful only for very small values of e"'lpol. 
Nevertheless the result is asymptotically correct. For example, we can certainly con- 
clude that if K =0,  so that R > 0 ,  then the effect of the non-linearity is to reduce the 
critical wavenumber. Kakutani and Michihiro (1983)i came to the same conclusion 
for a Stokes wave, as is indicated in table 1. 

7. Concluding remarks 

We have investigated a particular example of the general system (1.5), namely a 
relatively simple system governing ion acoustic plasma wave propagation. We have 
shown that, while away from marginal modulational instability the modulations of 
these waves are governed by a NS equation, the modulations near marginal modulational 
instability are governed by a M N S  equation. We have shown how to calculate the 
correction, due  to higher-order non-linearities, to the critical wavenumber for marginal 
modulational instability. As remarked in 1, we expect that the corresponding calculation 
for any other example of (1.5) will be just as formidable. 

It has to be admitted that the results in $9 5 and 6 are of limited physical significance 
for actual ion acoustic wave propagation because the model represented by equations 
(2.1) is over-simplified. Several more sophisticated models have been proposed. Chan 
and Seshadri (1975) argued that for k near k ,  = 1.471 (i.e. the value calculated in § 4) 
electron inertia cannot be neglected. They showed that if it is included in the two-fluid 
model then k ,  is infinite (implying that ion acoustic waves are modulationally stable), 
but that if the ions have non-zero temperature T, then k ,  is finite and depends on the 
ratio T e / T , .  Ichikawa and Taniuti (1973) also allowed for non-zero Ti, but used a 
Vlasov description of the plasma so that the effects of non-linear Landau damping 
could be taken into account. Using the reductive perturbation technique they showed 
that the equation governing the evolution of cp is a N S  equation of the form (1.1) but 
with an additional non-local non-linear integral term due to resonant ions at the group 
velocity. The effect of these ions also contributes to q. Ichikawa and  Watanabe (1977) 
applied a linear stability analysis to this modified form of the NS equation and showed 
that the frequency of the modulations (4  in the notation of I )  is complex regardless 
of the sign of pq,  and hence that ion acoustic waves are modulationally unstable when 
non-linear Landau damping is important. 

In view of the above observations we suspect that in a real physical system the 
evolution of the modulations near the k ,  predicted by a two-fluid model with finite 
Te/ T, will be determined as a competition between the higher-order non-linearities 
and wave-particle interaction effects. 

Finally we note that Inoue and Matsumoto (1974) have shown that, under certain 
restrictions, the modulations of wavelike solutions to the general system (1.5) away 
from marginal modulational instability are governed by a NS equation. Using a 

t Johnson ( 1 9 7 7 )  also investigated Stokes waves but found that R = - 2 5 . 1 ~ q 0 ~ '  when K =0, i.e. almost exactly 
the negative of Kakutani and  Michihiro's result. Consequently he  came to a different conclusion regarding 
the critical wavenumber for marginal modulational instability of a Stokes wave. 
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generalisation of the methodology given in 0 3, we can show that the modulations near 
marginal modulational instability are governed by a M N S  equation. We hope to report 
this work in due course. 
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Appendix 1 

In (3.6) and (3.12) Lo is given by 
a 

a 6  
Lo = ( - w A  + kBo) -+ V Co. 

The L,(m = 1 , 2 )  in (3.6) are given by 

a a a 
a 6  a7, a51 

a a a a 
Lz= kBz-+ Bl-+ A - + ( B , -  V , k )  -. 

a 6  a t 1  ar2 a 5 2  

L ,  = k B ,  -+ A -+ (Bo - V,A)  - 

The L,  ( m  = 1 , .  . . , 5 )  in (3.12) are given by 

Ll = k B ,  - a a a a a a 
a 6  a 6  ar, 851 a-9 a51 

L2 = kB2 - + A - +  (Bo-  V,A) - L,  = kB3 -+ BI - 

a a a a a a a 
a 6  a t ,  ar2 a 5 2  a 6  a51 a 5 2  

L4= kB4 -+ Bz - + A - +  (Bo - V,A) - L,=kBS-+B,-+B,--. 

Appendix 2 

The vector coefficients in § §  4 and 5 that are not given explicitly k r e  are as follows: 
-( 12k4 + 15 k 2  + 2 ) / 6 w 2 k 2  

- (6k4+ 9 k 2  + 2) /6wk3  
-( 3 k 4  + 9 k 2  + 2 ) / 6 k 4  
i ( 3  k4+6k2  + 2 ) / 3 k 3  

(24k4+ 33k2+6) /6w4k  
(6k4+9k2  + 2 ) / w 3  k 2  
( 3  k4+ 3 k’+ 2 ) / 6 k 5  

0 

-( k 6 -  k 4 - 7 k 2  - 6 ) / 2 w 4 k  
21 k6+ 31 k4+ 21 k 2  + 6 ) / 6 w 3 k 2  

18k6 + 34k4 + 27k2 + 6 ) / 6 k 5  
0 

+3’ = - 1  
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1 
"'= 288( k4+3k2 + 3)' 
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- - 
(240kZo+ 2874kIn + I 4  817kI6+ 42 757kI4+ 74 797kI2 + 79 523k" 

(912k"+ 12 246k1'+65 322kI6+ 188 054kI4+322 090k"+332 778k'" 

+47 263kn+ 10489k6-3200k4- 1920k'- 168)/w'kn 

+ 195 026k8 T 50 744k6- 2332k4-3192k' - 336)/w'k7 
4 2 4 k  I h +  489 k I 4  + 1845 k J 2  + 2590 k "  + 469 k 8  - 24 I 7kb 

-2480k4- 848k2 - 56)(k4+3k'+ 3)/k"  

- 0 - 

I i(216k8+ 537k6+405k4+ 86k2 +4)/48w2k5 
i(72k8+ 201 k6 + 18 1 k 4 +  54k2+ 4)/48wk6 
i(24k8 + 105 kb + 149k4 + 54k2 + 4)/48 k7 

(24k8+ 81 kh+93 k 4 +  38k2+4)/ 16kh 

i (  12k6 - 17 k 2  - 4)/3 kS 

-i(9k2 + 4)/3 k 5  1 iw(6k6-9k4-24k' - 8)/6k6 

8"' = - 

( k4 - 2k2 - 2)/ k4 

1 

1 (96k"+ 12kI4 -495k"+ 670k"'+4428kx+ 5997kh+ 3284k4+688k'+40)/144w'kx 

(240k"+ 1218k14 + 2799k" +4126k1" +4626k8 + 3903 kh + 2096k4 + 568k' + 40)/ 144wk' 

(24k"+ 21kt4 -9k'2+646k10+2265kR+3081 kb+  1940k4+ 568k2+40)/ 144k'" 
-i(24k1'+21k14- 126k"-t 46kI0+ 11 13k8 + 2040k6+ 1550k4+ 508k2+40)/72k9 

I = 

""'= ( k 4 +  3k2 + 3 )  

r (6k1°+ 1 5 k 8 + 4 k 6 - 2 6 k 4 - 2 7 k 2 - 6 ) / k 5  1 

J (6k" + 6k8 - 28k6 - 76k4 - 60k2 - 12)/wk4 
(3 k8+ 12k6+ 20k4+ 15 k2+ 6)/  kS I 0 

$ 5 )  = i 
6(k4+ 3 k2+ 3) 

I (6k8 + 43 kb+ 97 k4+ 81 k2 + 18)/ k5 
-(24kI0+ 57k8 - 53 k6 - 287k4- 246k2 - 36)/wk4 

(3k8+12k6+8k4- 15k2-18)/k5 I 0 

,-U) = i 
6( k4+ 3k2+  3) 

Appendix 3 

The coefficients m,, m 3 ,  m, in (5.7) are given by 

{576(k4+3k2+3)2k'2}m2 

= ~ ~ { 1 1 5 2 k ~ ~ + 1 7 4 2 4 k ~ ~ + 1 1 1  507k2'+405 648kI8+935 264kI6 

+ 1427 294kI4+ 1450 004k1*+951 352k"+367 547k8+60 596k6 

-6220k4-3408k2-336} 
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{12(k4+3k2+3)k7}m3 = w2{12k"+33k"'+Ok8- 114k6- 169k4-90k2- 12) 

{ 12( k4+  3k'+ 3) k'}m4 = -w3{24kI2 +75 k"-48kx - 492k6 - 719k4 -366k2 -36}. 

The coefficients I ] ,  1 2 ,  l3 in (5.8) are given by 

{36( k4+  3 k 2 +  3)lk6}1, 

= {36k'6+369k'4+1641k'2+4119k'"+6301k8 

-b 5883k6+ 3129k4 + 774k' + 36} 

{ 18( k4+3k2+3)'w3ks}12 

= {36k16+414k14+ 1875k'2+4506k10+6259ks 

+ 5046k6+2265k4+576k2+ lOS} 

{uk2}l3 = i { k 2 - 2 ) .  

The coefficients n,, n 3 ,  n4 in (5.10) are given by 

{72( k 4 + 3 k 2 +  3)'w3k6}n2 

=={144k2'+2124k20+13 467k1*+48 825kI6+111 904kI4+ 167 905k" 

+ 163 957ki0+99442k8+33 852k6+5820k4+1080k2+288} 

{2( k 4 + 3 k 2  + 3 ) 2 ~ k 3 } n 3  = {2k6+ 6 k 4 +  7 k 2 +  2}{ k6 + k4-6k2 - 12) n4 = -2n,. 
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